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Synopsis 

The sensitivity of model output variables for a batch polymerization reactor to uncertainties in 
the kinetic parameters and initial conditions is studied. Differential equations that describe the 
time variation of sensitivity coefficients for the batch reactor are derived. Numerical integration 
of the sensitivity equations reveals that  the system output responses are very sensitive to parameter 
variations especially when the polymerization exhibits an autoacceleration of the reaction rate. 

INTRODUCTION 

There have been a large number of experimental and theoretical investigations 
published on batch and continuous free radical polymerization reactors. Of the 
reported papers, many studies are concerned with the modeling and optimization 
of polymerization reactors. However, in spite of all this modeling activity, little 
has been published on the sensitivity analysis of these models. Sensitivity 
analysis is concerned with the deviations of model output responses caused by 
deviation of system parameters from their nominal values. Polymerization re- 
actors are usually modeled in terms of a set of nonlinear ordinary differential 
equations which possess a number of parameters, including rate constants, initial 
conditions, reactor temperature, and transport coefficients. Since it is not 
possible for us to know precisely the numerical values of model parameters, it 
is necessary to look into the sensitivity problem and determine how the parameter 
uncertainties affect the output variables of the system. 

The present work is concerned with the sensitivity analysis of a batch free 
radical polymerization reactor for methyl methacrylate (MMA). Four nonlinear 
ordinary differential equations in terms of initiator concentration, monomer 
conversion, zero moment, and second moment of the MWD are used to describe 
the dynamics of the batch system. To account for the conversion dependence 
of the termination and propagation rate constants, a gel effect function is in- 
troduced. Based on this model the differential equations governing the time 
variation of the sensitivity matrix are derived. 

REACTOR MODEL 

Free radical polymerization reactors can be modeled in terms of a set of non- 
linear differential equations. Derivation of these equations will not be attempted 
here for many modeling studies on this subject have been reported in the liter- 
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a t ~ r e . l - ~  The modeling equations that describe the time variation of initiator 
concentration, monomer conversion, and zero and second moment of molecular 
weight distribution (MWD), in a batch reactor for the polymerization of meth- 
ylmethacrylate (MMA), are written as4 

d I  
d t  
- = -kdl  

where I is the initiator concentration, X the monomer conversion, and P O  and 
p2 are the zero and second moment of MWD, respectively. The parameters 
which appear in the modeling eqs. (1 ) - (4 ) ,  are the initiator efficiency f ,  the ini- 
tiator decomposition rate constant kd,  and the ratio of the square of the propa- 
gation rate constant k,  over the termination rate constant, ktd ,  (K2 = k; /k td) .  
Experimental data57 have shown that the termination and propagation rate 
constants vary with the time due to the gel effect or Trommsdorf effect. As a 
result of this, the parameter Kz can be expressed as 

K2 = K20 .g(X,T) (5) 

where Kzo is the value of K2 at X = 0 and g(X,T) is the gel effect function that 
accounts for the conversion and temperature dependence of k ,  and ktd .  

Due to the gel effect the termination rate constant decreases, which results 
in an increase of the polymerization rate in the conversion range of 20-80%. 
Beyond this range, even the propagation reaction becomes diffusion controlled, 
which causes a dramatic decrease in the polymerization rate. To account for 
this type of behavior of Kz, an exponential relationship of g(X,T) on X and T 
was assumed. Friis and Hamielec6 had earlier proposed a similar expression 

g ( X , T )  = exp(AX3 + BX2 + CX) (6) 

with 

A = A1/T + A2, B = Rl/T + Bz, C = CI/T  + Cz (7 )  

The parameters A1, A2, . . . , CZ were estimated by fitting the model eqs. (1) - (7)  
to the experimental data of Balke.” A Levenberg-Marquardt routine for solving 
nonlinear least squares problems was used to estimate the unknown parameters. 
Because of the high sensitivity of the system responses to the parameters of the 
gel effect function, extra care had to be taken in selecting the initial values of 
these parameters. Numerical values of the kinetic parameters of the model and 
estimates of the parameters Al ,  Az, . . . , CZ are given in Appendix A. 
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SENSITIVITY ANALYSIS 

Although the mathematical model developed in this work describes satisfac- 
torily the polymerization of methyl methacrylate in a batch reactor, yet our 
knowledge of the kinetic parameters may be imperfect. This gives rise to the 
important problem of parameter sensitivity. The aim of this analysis is to find 
the effects of parameter uncertainties on the calculated output responses. In 
our case we study the effects of parameter uncertainties in k d ,  f ,  K2, on the cal- 
culated values of [I], X ,  PO, ~ 2 .  In addition to the sensitivity of the system re- 
sponses to the above parameters, we are also interested in knowing the effects 
of the initial initiator concentration [Io] and polymerization temperature T on 
the output variables. 

As we saw earlier, the polymerization of MMA in a batch reactor can be de- 
scribed by a set of four differential eqs. (1)-(4), which can be written in a vector 
form as 

2 = f(Z,P,t), Z(t0) = zo, (8) 

z = (I,X,P0,P2)T (9) 

(10) 

The sensitivity coefficient for the parameter p j  and the output Zi is defined 

where Z is the output vector and p the parameter vector, defined by 

P = ( k d  ,f 9K207-4 1 ,A 2 3  1 ,B2,C 1, c21 TJo) 

as the first partial derivative of Zi with respect to pj 

dZi 
dPj 

@.. = - i = l ,  ..., 4, j = 1 ,  ..., 11 Y 

Sensitivity coefficients indicate the magnitude and the direction of change of 
the response Z due to perturbations in the values of the parameters. For a vector 
of output variables Z the matrix of the derivatives with respect to the parameters 
p is called the sensitivity matrix (aij): 

The information provided by the model must be used to determine (dzldp).  
However, since eqs. (8) cannot be integrated analyticslly, the sensitivity matrix 
cannot be calculated analytically from eq. (12). Following the analysis of Ath- 
erton et al.9 and Beck and Arnold,lo a differential equation for the sensitivity 
matrix is derived. This is obtained by interchanging the order of differentiation 
in the expression below and using eq. (8) 

Since Z is a function of p, the right-hand expression is expanded to give 
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Fig. 1.  The effect of parameter perturbations on the conversion (10 = 0.017 mol . L-1, T = 70°C): 
I 1  1 H i ;  (2)  H l ;  (3)  A , ;  (4) A?; (5 )  K2o; (6) k d .  f ,  CI,  Cr 

Introducing the sensitivity coefficients, @i,, eq. (14) is written as 

(15) 
d+. -  d f  i d f i  . A=c-4Q’,,+- 1 , 1 = 1 ,  ..., 4, j=1 ,  . . . ,  11 

d t  [ dZ1 dp; 
The initial conditions for eq. (15) are summarized as 

(16) 
0 if p; is not an initial condition 

{a,, if p,  is an initial condition @1;(0) = 

From the numerical integration of‘the differential eq. (15) with the initial con- 
ditions (16), we obtain the complete time history of the sensitivity coefficients. 
The  total number of the sensitivity equations is equal to  the number of state 
variables times the number of parameters (i.e., 4 X 11). The differential equa- 
tions that describe the time variation of the sensitivity coefficients for the batch 
reactor are derived in Appendix B. 

The results of the integration of the sensitivity equations for h d ,  f ,  Kzo, A l ,  

-’OO 125 2 5 0  3 7 5  5 0 0  6 2 5  750 8 7 5  1000 

Time (min) 

Fig. 2. The  effect of parameter perturbations on the second moment of MWD ( l o  = 0.017 mol 
. L-I, T = 70°C): (1) B,; (2) B2; (3) A i ;  (4) Az; (5) k d , f ,  kzo ,  CI, C2. 
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Fig. 3. The effect of temperature perturbations on the system responses ( l o  = 0.017 mole L-l). 

B I ,  C1, A2, Bz, C2 are summarized in Figures 1 and 2. In order to show the rel- 
ative influence of the parameters on the output variables, normalized sensitivity 
coefficients defined by eq. (17) are plotted: 

Pi j  = @ij (P j l z i )  (17) 
A positive sensitive coefficient indicates that a positive variation of the corre- 
sponding parameter causes an increase in the output variable. A negative sen- 
sitivity coefficient indicates that a positive variation of the parameter results 
in a decrease in the output variable. It is seen that the output variables are most 
sensitive to A1, B1, A2, B2 parameters, Figures 1 and 2. 

An increase in kd or in f does not cause any significant perturbation on the 
initiator concentration and the zero moment; however, it causes a slight increase 
in monomer conversion and a slight decrease in second moment at  the end of the 
reaction (Figs. 1 and 2). 

The effect of temperature perturbations on the system outputs is shown in 
Figure 3. An increase in temperature results in an increase in monomer con- 
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Fig. 4. The effect of perturbations in the initial initiator concentration on the system responses 
(T = 70°C). 
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version and zero moment, a small decrease in initiator concentration, and a de- 
crease in second moment at the end of reaction. 

The effect of perturbations in the initial concentration of catalyst [I01 on the 
system responses is shown in Figure 4. The output variables are much less 
sensitive to [Io] than to T. However, the profiles of the corresponding sensitivity 
coefficients have similar shapes. An increase in [Io] causes an increase in 
monomer conversion and zero moment and a decrease in the second moment at 
the end of the reaction. 

The quantitative interpretation of Figures 1-4 shows how accurate the esti- 
mates of the kinetic parameters should be. As an example, consider the effect 
of a perturbation in B1 on the conversion X. From Figure 1, it can be seen that 
the dimensionless sensitivity coefficient p26 can take values up to 25. For a value 
Of  p26 equal to 25, eq. (17) becomes 

For a small perturbation in B1 (i.e., l%), dXIdB1 can be approximated by 
AXIAB 1. Therefore, 

This means that a 1% perturbation in B1 (BI  changes from 75,000 to 75,750) could 
result in a 25% variation in monomer conversion. 

CONCLUSIONS 

The application of the sensitivity analysis to the system equations has revealed 
that the system output responses are very sensitive to parameter variations 
especially when the polymerization exhibits an autoacceleration of the rate of 
reaction. We have shown quantitatively that in the conversion range where the 
rate constants become diffusion controlled the system responses can vary from 
0-150% as a result of small perturbations in the kinetic parameters. In particular, 
it has been shown that the second moment of the MWD and the monomer con- 
version are very sensitive to the polymerization temperature and kinetic pa- 
rameters A1, Az, B1, B2 of the gel effect function. 

The results of this paper on the sensitivity analysis have provided valuable 
information for the study of optimal control of polymerization  reactor^.^ In 
particular, Figures 3 and 4 show that an increase in temperature or initiator 
concentration will have initially a positive effect on both monomer conversion 
and second moment of the MWD (positive sensitivity coefficients), while a t  the 
end of the polymerization a similar change will cause an increase in the monomer 
conversion and a decrease in the second moment. This means that, after a 
certain conversion, the system variables, conversion, and second moment of the 
MWD will react in opposite directions to manipulations of the control variables 
(initiator concentration, temperature), thus making the simultaneous control 
of these variables impossible. It should be noted that the sensitivity coefficients 
for po and I do not remain constant with time (Figs. 3 and 4). In fact, they vary 
slightly with time. The observed small variation in these coefficients is due to 
the almost constant initiator concentration during polymerization. 
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h 

Finally we must point out that the sensitivity coefficients can provide insight 
into the cases for which parameters can and cannot be estimated. Actually, 
parameters in an algebraic or differential equation can be uniquely estimated 
if the sensitivity coefficients are not linearly dependent over the range of ex- 
perimental measurements. 

APPENDIX A 

Numerical Values of the Kinetic Parameters 

f = 0.6 
kd = 1.35 X exp(-16298.O/T) (s-l) 

K2o = 100.4 exp(-2960.O/T) (L-mol-h-') 
[Io] = 0.017 (mo1.L-l) 
Mo = 9.3 (mo1.L-l) 

Estimates of the Parameters in g(X,T) 

A1 = -9.65 X lo4 (K), Az = 2.50 X lo2 
B1 = 7.50 X lo4 (K), Bz = 1.85 X lo2 
ci = -2.50 X 10 (K), Cp = - 2.50 X lo-' 

APPENDIX B: DERIVATION OF THE SENSITIVITY 
EQUATIONS 

The bulk polymerization of MMA in a batch reactor is described by the following set of differential 
equations: 

2 1  = -kdZ1 + F c / v  
2 2  = (2fkdZiKp)"'. (1 - 2 2 )  

23 = 2fkdZl (19) 
2 4  = 2K2M31 - ZpP 

z = (Zl,Z2,Z3,Z4)T = U,X,PO,P2)T 

where the overdot denotes the time derivative of a variable ( d l d t )  ( ). Z is the output vector 

and 

Kp = Kzo exp(AZ: + BZ; + C )  = Kzo .g(Zz,T) 

Application of sensitivity eqs. (15) and (16) to the system of eq. (19) yields the following differential 
equations for the sensitivity coefficients: 

For the dissociation rate constant kd: 

411 = s1*11- z1 
4 2 1  = sz*ii + + ( fK~Z1/2kd)~/~(1  - zz) (20) 

431 = S4a.11 + 2fz1 
4 4 1  = s5%1 

I.C. *i1(0) = 0, i = 1 , .  . ., 4 
where S1, Sz,Sa, S4, S5 are defined as 

si = -kd, s 2  = (fkdK~/2Z1)'/~(1 - 22) 
s3 = ['/2(3AZ; + 2BZz)(1 - zz) - 1](2fkdZiK~)~/~  

s4 = 2fkd 
s5 = [-2 + (1 - Z2)(3Az; + 2BZ2)][2Kphfg(l - zp)] 
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I.C. *iS(O) = 0, i = 1,. . .) 4 

For parameter Cz: 

I.C. *i9(0) = 0, i = 1,.  . ., 4 

For temperature T: 

I.C. *ilO(O) = 0, i = 1,. . ., 4 

For initial initiator concentration [ l o ]  

4111 = s1*111 

4 2 1 1  = sZ*111 + s3*.211 

4311 = s4*111 

4411 = s5*211 

1.c. %11(0) = 1, *i11(0) = 0, i = 2,. . .) 4 

The numerical integration of the sensitivity equations has been performed along with the numerical 
integration of the state equations, using a fourth order Runge-Kunta routine with variable step size. 
It should be noted that the sensitivity equations are very stiff and extra care must be taken in inte- 
grating these  equation^.^ Another method of solution is to represent (dZJdp,) as a finite difference 
and compute values of the state variables for small perturbations in the parameters p: 

dzs 

'PI 6pJ 
*,] = z&(pl,. . .) PJ + aP,, ' ' .) - zl(Pl,. . .P p /?  ' ") -= 

Following the recommendation of Beck and Arnold,lo SPJ has been chosen equal to 6p, = O.oOOlP,. 
This simple procedure is often quite satisfactory. In this work, sensitivity coefficients calculated 
by the two methods did not vary significantly. 

APPENDIX C: NOMENCLATURE 

initiator efficiency 
gel effect function, g(X,T) = Kz/K2o 
initiator concentration (gmol . L-1) 
initiator concentration at  time t = 0 (gmol - L-1) 
rate constant for dissociation of initiator (s-l) 
propagation rate constant (L - gmol-l. s-l) 
rate constant for termination by disproportionation (L - gmol-1 - s-l) 
K z  = ki/ktd (L - gmol-' - s-l) 
Kz at  conversion X = 0 (L * gmol-' * s-l) 
monomer concentration (gmol L-l) 
monomer concentration at  time t = 0 (gmol - L-l) 
parameter vector 
time 
polymerization temperature (OK) 

monomer conversion 
system output vector, Z = ( [I] ,X,po,p~)~ 
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Fk 
Pi, normalized sensitivity coefficient 
@ij sensitivity coefficient 

kth moment of the dead polymer distribution (gmol . L-l) 
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